
NEC ULTRA-WIDEBAND DIFFERENTIAL VIDEO AMPLIFIER

FEATURES

- BANDWIDTH AND TYPICAL GAIN 120 MHz at AVOL = 300 170 MHz at AVOL = 100 700 MHz at AVOL = 10
- VERY SMALL PHASE DELAY
- GAIN ADJUSTABLE FROM 10 TO 300
- NO FREQUENCY COMPENSATION REQUIRED

DESCRIPTION

The UPC1663G is a video amplifier with differential input and output stages. A high frequency process ($f_T = 6 \text{ GHz}$) improves AC performance compared with industry-standard video amplifiers. This device is excellent as a sense amplifier for high-density CCDs, as a video or pulse amplifier in high-resolution displays, and in communications equipment.

UPC1663G

ELECTRICAL CHARACTERISTICS (TA = 25°C, Vcc = ±6 V, Rs = 50 Ω, f = 10 MHz)

PART NUMBER PACKAGE OUTLINE			UPC1663G G08			
SYMBOLS	PARAMETERS AND CONDITI	ONS	UNITS	MIN	TYP	MAX
Icc	Power Supply Current		mA		13	20
Avd	Differential Voltage Gain: Gain ¹ Gain ²			200 8	320 10	500 12
BW	Bandwidth (Gain is 3 dB down from the gain at 100 KHz)	Gain ¹ Gain ²	MHz MHz		120 700	
tR	Rise Time, Vout = 1V _P -p:	Gain ¹ Gain ²	ns ns		2.9 2.7	
tpd	Propagation Delay, Vout = 1 Vp-p:	Gain ¹ Gain ²	ns ns		2 1.2	
Rin	Input Impedance:	Gain ¹ Gain ²	kΩ kΩ	50	4.0 180	
CIN	Input Capacitance		pF		2	
lio	Input Offset Current		μA		0.4	5.0
Ів	Input Bias Current		μA		20	40
VN	Input Noise Voltage, 10 k to 10 MHz		μVr.m.s.		3	
Vi	Input Voltage Range		V	±1.0		
CMRR	Common Mode Rejection Ratio, Vcm = ± 1 V, f ≤ 100 kHz Vcm = ± 1 V, f = 5 MHz		dB dB	55 53	70 60	
SVRR	Supply Voltage Rejection Ratio, $\Delta V = \pm 0.5 V$		dB	50	70	
Vo(off) Output Offset Voltage, Vo(off) = OUT1 - OUT2 Gain ¹ Gain ²		V V		0.3 0.1	1.5 1.0	
VO (CM)	Output Common Mode Voltage		V	2.4	2.9	3.4
VOp-p	Max. Output Voltage Swing, single-ended		Vp-p	3.0	4.0	
Isink	Output Sink Current		mA	2.5	3.6	

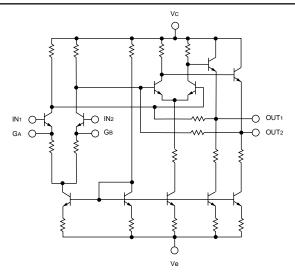
Notes:

1. Gain select pins GA and GB are connected together.

2. All gain select pins are open.

3. Insert adjustment resistor (0 to 10 k Ω) between GA and GB when variable gain is necessary.

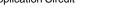
ABSOLUTE MAXIMUM RATINGS¹ (TA = 25°C)


SYMBOLS	PARAMETERS	UNITS	RATINGS
VC-VE	Voltage between Vc and VE	V	-0.3 to 14
Рт	Total Power Dissipation ²	mW	280
Vid	Differential Input Voltage	V	±5
Vin	Input Voltage	V	±6
lo	Output Current	mA	35
Тор	Operating Temperature	°C	-45 to +75
Тѕтс	Storage Temperature	°C	-55 to +150

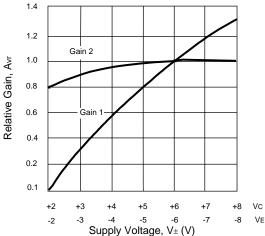
Notes:

1. Operation in excess of any one of these parameters may result in permanent damage.

- 2. Mounted on 5 cm x 5 cm x 0.16 mm glass epoxy PCB $(T_A = Max T_{OP}).$
- 3. Mounted on 50 cm x 50 cm x 1.6 mm glass epoxy PCB with copper film (TA = Max TOP).

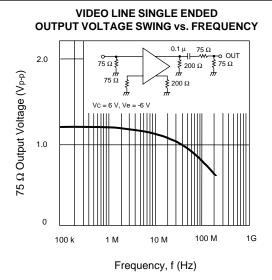

EQUIVALENT CIRCUIT

TYPICAL PERFORMANCE UNDER SINGLE SUPPLY +5 V OPERATION*

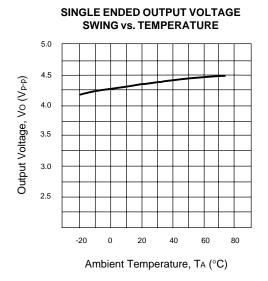

PARAMETER	CONDITIONS	TYPICAL	UNITS
Differential Gain Gain 1	15 MHz	35	dB
Gain 2		11	dB
Bandwidth	Gain is 3 dB down from		
Gain 1 Gain 2	the gain at 100 KHz	106 115	MHz MHz
Rise Time Gain 1	Rs = 50 Ω , Vout = 80 mV _{p-p}	2.2	ns
Propagation Delay			
Gain 1	RS = 50 Ω, Vout = 80 mVp-p	2.8	ns
Gain 2	RS = 50 Ω, Vout = 60 mVp-p	1.8	ns
Phase Shift	100 MHz		
Gain 1		-123	degree
Gain 2		-93	degree
Output Power	ZL = 50 Ω, 15 MHz		
RA = 240 Ω		5.0	dBm
RA = 910 Ω		0	dBm
RA = 80 Ω		-11.5	dBm

* See Application Circuit

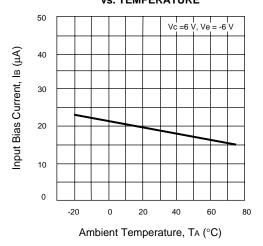
NORMALIZED VOLTAGE GAIN vs. SUPPLY VOLTAGE

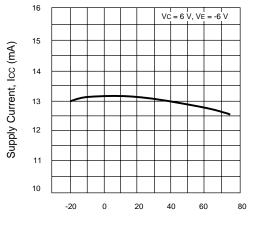

RECOMMENDED **OPERATING CONDITIONS** (TA = 25°C)

SYMBOLS	CHARACTERISTICS	UNITS	MIN	TYP	MAX
Vc	Positive Supply Voltage	V	+2	+6	+6.5
Ve	Negative Supply Voltage	V	-2	-6	-6.5
IO source	Source Current	mA			20
IO sink	Sink Current	mA			2.5
	Frequency Range	MHz	DC		200

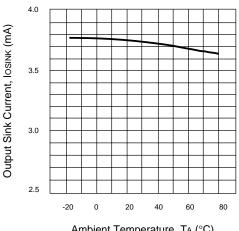

Attention:

Due to high frequency characteristics, the physical circuit layout is very critical. Supply voltage line bypass, double-sided printed-circuit board, and wide-area ground line layout are necessary for stable operation. Two signal resistors connected to both inputs and two load resistors connected to both outputs should be balanced for stable operation.

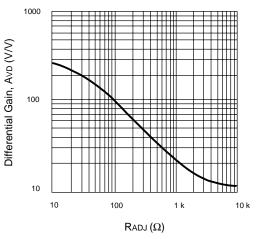

TYPICAL PERFORMANCE CURVES (TA = 25°C)


TYPICAL PERFORMANCE CURVES (TA = 25°C)

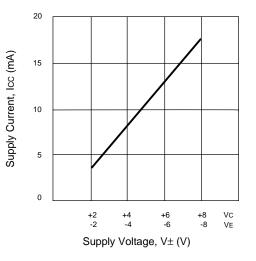
INPUT BIAS CURRENT vs. TEMPERATURE



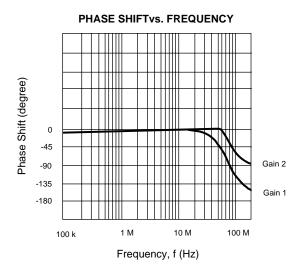
SUPPLY CURRENT vs. TEMPERATURE


Ambient Temperature, TA (°C)

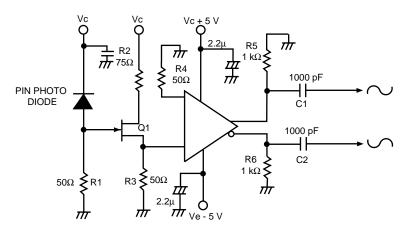
SINK CURRENT vs. TEMPERATURE



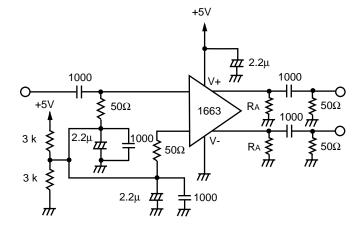
Ambient Temperature, TA (°C)


DIFFERENTIAL VOLTAGE GAIN vs. RESISTANCE BETWEEN GA AND GB

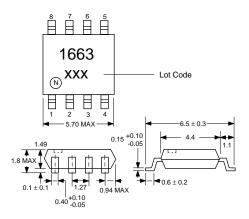
SUPPLY CURRENT vs. SUPPLY VOLTAGE



TYPICAL PERFORMANCE CURVES (TA = 25°C)


TYPICAL APPLICATIONS

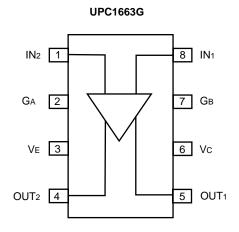
• Photo Signal Detector


Since the input impedance of the IC falls when the gain rises, stable operation can be achieved by inserting a FET buffer when necessary as illustrated above.

• Application for +5 V Single Supply

OUTLINE DIMENSIONS (Units in mm)

UPC1663G PACKAGE OUTLINE G08


Notes:

- 1. Each lead centerline is located within 0.12 mm (0.005 inch) of its true position at maximum material condition.
- 2. All dimensions are typical unless otherwise specified.

ORDERING INFORMATION

PART NUMBER	QUANTITY
UPC1663G-E1	2500/Reel

CONNECTION DIAGRAM (TOP VIEW)

