

Designated client product

This product will be discontinued its production in the near term.

And it is provided for customers currently in use only, with a time limit.

It can not be available for your new project. Please select other new or existing products.

For more information, please contact our sales office in your region.

New Japan Radio Co.,Ltd.

www.njr.com

SIGNAL LEVEL SENSOR SYSTEM

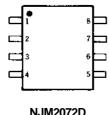
■ GENERAL DESCRIPTION

The NJM2072 is a monolithic integrated circuit designed for signal

level sensor system. The NJM2072 features low power, low voltage operation, and high input sensitivity and is suited for the signal level sensor system for micro cassette, vox for telecommunications.

■ PACKAGE OUTLINE

NJM2072D

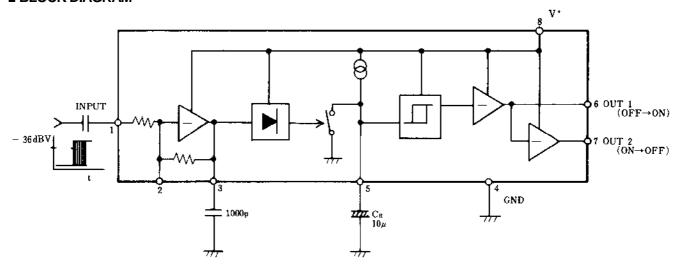

NJM2072M

■ FEATURES

-0.9 to +7V
).55mA typ.
36dBV typ.
DIP8, DMP8

Bipolar Technology

■ PIN CONFIGURATION



NJM2072D NJM2072M

PIN FUNCTION

- 1. INPUT
- 2. Gain Control
- 3. Amp.Output
- 4. GND
- 5. Capacitor for Recovery time
- 6. OUT1
- 7. OUT2
- 8. V

■ BLOCK DIAGRAM

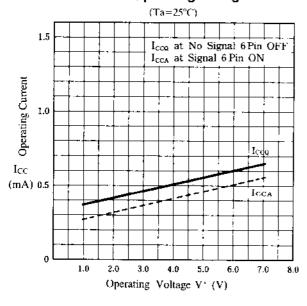
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

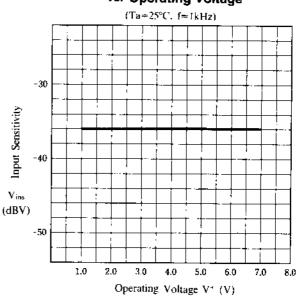
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	8	V
Power Dissipation	P _D	(DIP8) 500 (DMP8) 300	mW
Operating Temperature Range	T _{opr}	-40~+85	°C
Storage Temperature Range	T _{stg}	-40~+125	°C
Maximum Input Voltage	V _{imax}	V ⁺ -1	V

■ ELECTRICAL CHARACTERISTICS

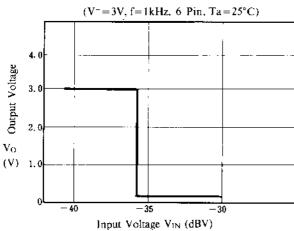
 $(Ta=25^{\circ}C,V^{+}=3V)$

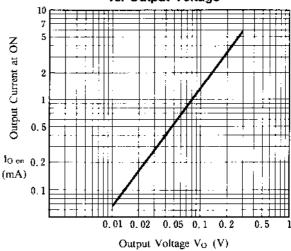

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V ⁺		0.9	-	7	V
Operating Current	Icc	V _{in} =0mVrms,R _L =∞	0.2	0.55	1.5	mA
Input Sensitivity	V _{ins}	f=1kHz	-39	-36	-33	dBV
Attack Time (note1)	T _{atc}	f=1kHz,C _R =10µF	-	1	25	mSec
Recovery Time (note2)	T _{rec}	f=1kHz,C _R =10µF	-	2	-	Sec
Output Current at ON (OUT1)	I _{01 on}	$V_{in}=30 \text{mVrms}, V_{O}=0.3 \text{V}$	1	3	-	mA
Output Current at ON (OUT2)	I _{02 on}	V _{in} =0mVrms,V _O =0.3V	1	3	-	mA
Output Current at OFF (OUT1)	I _{01 off}	V _{in} =0mVrms,V _O =8V	-	-	1	μA
Output Current at OFF (OUT2)	I _{02 off}	V _{in} =30mVrms,V _O =8V	-	-	1	μA
Input Resistance	R _{in}		16	20	24	kΩ
Charge Current	I _{chg}		1.0	2.0	3.0	μA

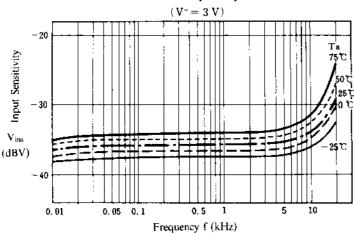
⁽note1) Attack Time: Period from putting input signal of more than minimum input sensitive signal to output level change.

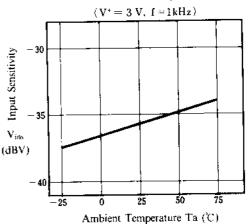

⁽note2) Recovery Time: Period from input signal becoming lower than minimum input sensitive signal to output level change.

■ TYPICAL CHARACTERISTICS

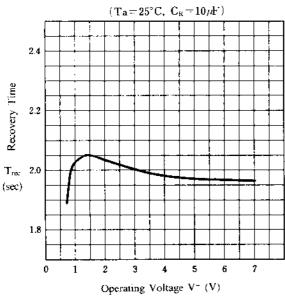

Operating Current vs. Operating Voltage


Input Sensitivity vs. Operating Voltage

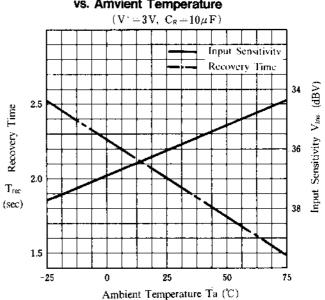

Output Voltage vs. Input Voltage


Output Current at ON vs. Output Voltage

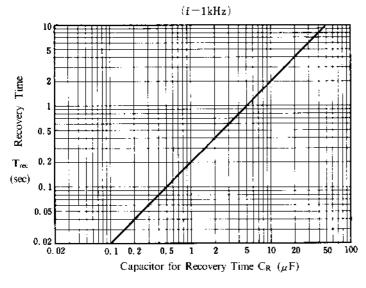
Input Sensitivity vs. Frequency

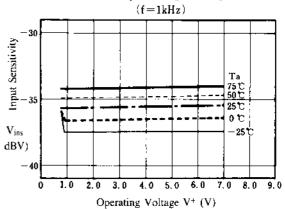


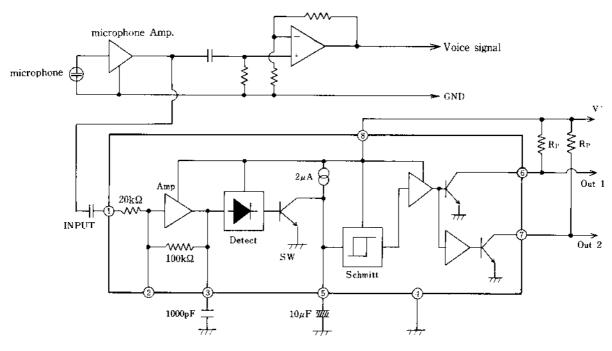
Input Sensitivity vs. Ambient Temperature



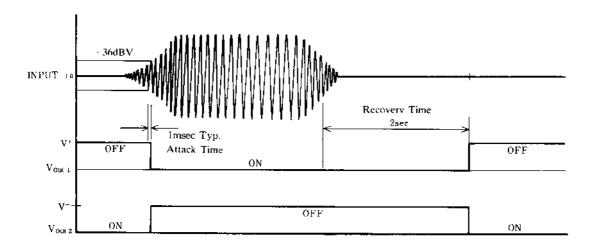
■ TYPICAL CHARACTERISTICS


Recovery Time vs. Operating Voltage


Input Sensitivity Recovery Time vs. Amvient Temperature


Recovery Time Characteristics

Input Sensitivity vs. Operating Voltage


■ TYPICAL APPLICATIONS

Pins 6 and 7 show an open collector. Mount resistor R_P shown by the following equation.

$$R_P = (V^+_{MIN} - 0.2)/0.3 (k\Omega)$$

Resistor R_P to pin 7 is omissible,if pin 6 only is used. But resister R_P to pin 6 should be put when Out2 only is used. V^+_{MIN} is minimum supply voltage.

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nisshinbo Micro Devices:

NJM2072M NJM2072D